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Abstract

For a transverse acceleration wave propagating along a principal axis of strain in a nonlinear
isotropic elastic solid, a simple formula due to Ericksen relates the wave speed to the stress and
strain state at the wave front. We derive the appropriate generalization of this result for finite
deformation viscoplasticity models based on the multiplicative decomposition of the deformation
gradient into elastic and plastic parts. The inclusion of scalar internal state variables (e.g., to
model damage) is also considered. The results may be used to obtain information on the stress
state ahead of the wave if the strain state and wave speed are known. We discuss applications
to the analysis of oblique plate impact tests, where the transverse wave propagates into uniaxially

strained material.
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1 Introduction

For several classes of isotropic materials, we derive formulas for the transverse wave
speed in oblique plate impact tests in which a flyer plate impacts a parallel target
plate (the specimen under study) with both plates inclined relative to the direction of
motion of the flyer; cf. [1]-[5]. The velocity imparted to the target face upon impact
has nonzero components in directions normal and parallel to the target face; these are
referred to as the longitudinal and transverse directions. A longitudinal wave brings
the target into a state of compressive uniaxial strain in the longitudinal direction, and
a slower transverse (or shear) wave propagates into this uniaxially strained material.
The problem considered here is how to use the transverse wave speed to probe the
stress state in the uniaxially strained region ahead of the transverse wave.

The Cauchy stress tensor is denoted by T; 01, 09, 03 denote the principal stresses
taken positive in compression; and p denotes the pressure:

3

—T=Za,~ei®ei, pE—%tI’T=%(O’1+O’2+0’3). (1)
=1

The unit eigenvectors e; of T lie along the principal axes of stress. We assume the

target plate is undeformed and stress-free prior to impact; all measures of deformation

are taken relative to this undeformed state. The principal stretches are denoted by

A1, A2, A3. The densities in the deformed and undeformed states are denoted by p

and pg, respectively.

Consider the compressive uniaxial strain generated by the longitudinal wave:

po/p=A<1=X=)X;. (2)
For an isotropic material, we expect that the principal stresses satisfy
o1 >09,=03>0. (3)

There is only one nonzero principal shear stress (to within a sign), and we denote it
by 7

7 =1(01—09) > 0. (4)

Then by (1), (3), and (4), the longitudinal stress o; is given in terms of the pressure
p and shear stress 7 by the well-known formula

oL =p+3T. (5)

Since o7 and \; can usually be inferred from measurements of the longitudinal wave,
we assume they are known. Then by (4) and (5), any one of the stresses o3, p, or T
determines the other two.



We expect that the transverse wave speed Ur is influenced by the stress and
(uniaxial) strain state ahead of the transverse wave. If Ur depends on o3, p, or T
(and perhaps o7 and A; as well), then by measuring Ur and using the known values of
o, and )\, we might be able to solve for one (and hence all three) of the stresses o3, p,
and 7 in the uniaxially strained region ahead of the transverse wave. This approach
is due to Gupta [2, 3]; cf. also Aidun and Gupta [4] and Conner [5]. Our analysis
differs from that in [2]-[5] in that we derive ezact formulas for the transverse wave
speed. The elastic case is treated in §2. In §3 we extend these results to viscoplasticity
 models with instantaneous elastic response based on a multiplicative decomposition

of the deformation gradient into elastic and plastic parts. In §4 we discuss thermal
effects and the incorporation of scalar internal variables that affect elastic response;
possible applications include isotropic damage in ceramics.

Since the transverse wave may be structured, the wave speed Ur of interest here
is that of the wave front, as this is the only part of the transverse wave traveling into
a state of pure uniaxial strain. The results in the sequel are based on the assumption
that the transverse wave front is an acceleration wave.! Across such a singular surface
the particle velocity, stress, and strain are continuous, with jump discontinuities in
the gradients and rates of the transverse component (only) of these quantities. As
shown by Abou-Sayed and Clifton [1], these jumps need not be finite; e.g., the particle
acceleration immediately behind the wave front may be infinite. For the materials
considered in this report, such behavior does not affect the formulas for the wave

speed.

2 Isotropic Elastic Response

Let F denote the deformation gradient, R and V the rotation and left stretch
tensors in the left polar decomposition of F, and B the left Cauchy-Green tensor:
F = VR and B = FFT = V2. Then for isotropic elastic response, T = '7'(F) =
T(V) = T(B), where 7 and T are isotropic functions; cf. [7, §47]. The principal
stretches ); are the principal values of V. The principal axes of B and V are the
principal axes of strain in the deformed state. By isotropy, these are also the principal
axes of stress, so that by (1);, V = £, \e; ® ¢; and B = 2 be; ® e;, where
b; = A2. Let J denote the Jacobian of the deformation and let 5 denote the ratio of

1The other possibility is that the transverse wave front is a shock, across which there are jumps
in the transverse components of the particle velocity, stress, and strain. Because of material non-
linearities, there may also be second-order jumps in the corresponding longitudinal components (cf.
Davison [6] for the elastic case); for this reason such a wave front is often called a quasi-transverse
shock. Stability arguments imply that the shock wave speed Uz should exceed the acceleration wave
speed Ur. If the transverse wave front is a shock, then the exact results in the sequel may be con-
verted to inequalities by using the inequality Ur < Ur, or they may be regarded as approximations
if Ur is replaced with Ur.




the densities in the deformed and undeformed states:
ﬁEp/p(J:l/J, J=detF =detV=vdetB = b1b2b3=)\1)\2)\3. (6)

Consider a transverse acceleration wave with direction of propagation e; and am-
plitude (e.g., jump in acceleration) parallel to e;. If by # by (equivalently, A; # )\2)
then the speed? Uz of this transverse acceleration wave is given by Ericksen’s formula:®

0'1—0'2 — 01 — 09 (7)

where all quantities are evaluated at the wave front.
By (2), (6), and the isotropy of 7, for compressive uniaxial strain we have

1<p=1/ybi=1/M, Jo=d=b=b=1, or=0;. (8)
From (8), (7), and (4), we obtain the following exact formulas for the speed Ur of a
transverse acceleration wave propagating in the longitudinal direction into a uniaxially

strained isotropic elastic material:

2 _ 0103 _ 27 (9)

where all quantities are evaluated at the wave front. From (8); and (9) we see that
o1 > oy (equivalently 7 > 0) is necessary for the existence of a transverse acceleration
wave. On solving (9) for 7 and then using (5) and (4), we obtain exact formulas for
the shear stress, pressure, and lateral stress in the uniaxially strained region ahead of
the transverse wave (cf. Scheidler [11]):

=3(p* - DpUr, (10)
p=01“§7'=01—§(/32—1)PUT2, (11)
oy=0,—-2r =0y — (p2 = 1)pUr". (12)

For isotropic elastic response, this solves the problem posed in the introduction.

2 Uy always denotes the speed relative to the deformed material. For elastic response, Ur is also
the ultrasonic shear wave speed. For the cases covered by (7) and (9), the corresponding referential
or Lagrangian wave speed is Ur/ ;.

3Cf. Truesdell [8], Truesdell and Noll [7, §74], and Bowen and Wang [9, 10]. The universal relation
(7) does not require the existence of a strain energy function.
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3 Viscoplasticity Based on the Multiplicative De-
composition of the Deformation Gradient

In this section we consider viscoplasticity theories based on the multiplicative
decomposition of the total deformation gradient F into an elastic part FF and a
plastic part FF: F = FEFP; cf. [12, §4] and [13]. FF and F* have left and right polar
decompostions F¥ = VERE and FF = RPU?, respectively, where R” and RY are
rotations, and the elastic left stretch tensor VE and plastic right stretch tensor UP
are symmetric positive-definite. Then

F = FEF? = (VERE)(RFUP) = VER'UP, R!'=RPR". (13)

The elastic left Cauchy-Green tensor B and the plastic right Cauchy-Green tensor
CP are defined as follows:

BE = FE FE)T — (VE)Z, CP = (FP)TFP — (UP)2 ) (14)
Also note that from (13) and (14), we have
FE=FFF)!, BF=FCH'F’, VFR'=FU")". (15)

We interpret F as the deformation gradient from the undeformed reference config-
uration to an intermediate plastically deformed configuration. For any deformations
for which FP remains fixed, the response is assumed to be elastic, so that the stress
T depends only on the deformation gradient FZ from the intermediate configuration
to the current configuration. We assume that this elastic response relative to the
intermediate configuration is isotropic and unaffected by prior plastic deformation.
Thus there are isotropic functions 7 and T such that?

T = T(FF) = T(VE) = T(BF). (16)

Then T, VE, and B are coaxial, so that by (1)1, VF = 2, A\Fe; ® ¢; and
BE = Y3, bFe; ® e;, where bF = (\F)?, and the principal values Af of VZE are the
principal elastic stretches. The spatial velocity gradient is L = FF-! (a superposed
dot denotes the material time derivative), so by (16) and (15),,

.

T = DT(B®)[BF], Bf =LBF +BFLT + F(CP)-'F’, (17)

4By (15)s, VER! is the left polar decomposition of F(U”)~!. Hence if F and UF (or CP)
are known, then VZ and R* (but not FE, FP, RE, or RF) are uniquely determined; cf. Nemat-
Nasser [12, §4]. Since T is determined by VE it follows that T is determined by F and U¥ (or CF);
this conclusion also follows from (16)s and (15). Thus to complete the constitutive model, one need
only provide evolution equations for UP or CF. We do not consider specific evolution equations
here, but instead postulate certain qualitative properties of these plastic deformation tensors.
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where DT (BE), the derivative of T evaluated at B, is a fourth-order tensor.
We assume that the material exhibits instantaneous elastic response in the sense
that CP and CF are continuous across an acceleration wave front. Thus

[cP] =0 and [¢*] =0, (18)

where [®] denotes the jump in @ across the wave front. These conditions are equiv-
alent to [[UP]] = [[UP]] = 0 and also to H(CP) ]] [[(CP) ﬂ = 0. Since F is also

continuous across an acceleration wave, from (15); and (16)—(18) it follows that B®
and T are continuous across an acceleration wave, whereas

[t] =p7(B®) [B7], [B"] =[LIB®+B* Ly” . (19)

These relations are analogous to the jump relations for the purely elastic case, where
B = B. Then an analysis similar to that in [7]-{10] yields the following generaliza-
tion of Ericksen’s formula (7). Assume that b2 # b¥ (equivalently, Af # A¥). Then
the speed Ur of a transverse acceleration wave Wlth direction of propagation e; and
amplitude parallel to e, is given by

01 — 02 01 — 09

pUT2 = bg = )\E 5 , (20)
I8 — 1 22 -1
# (%)
where all quantities are evaluated at the wave front.

The Jacobian J is given by (6). Since F = FFFP | we also have J = J¥JF, where
the elastic Jacobian JE and a plastic Jacobian J¥ are given by

JE = det FE=det VE= AEAEAE | JP =detFP=det U= ATA0N].  (21)

The principal values Al of U are the principal plastic stretches. The principal
distortional elastic stretches /\E and the principal distortional plastic stretches /\P are
defined as follows (%, j, k dlstmct)

— E E \E\ /3 _ P P y\P\1/3
Fo - (B4) wede-(24)" e

MEXE) TP~ \WF P

Then 3\? and F are independent of J¥ and J¥, respectively, and thus are measures
of elastic and plastic distortion only. They satisfy the constraints

NANEXN =1, MNXN=1. (23)
If plastic incompressibility is assumed, then J” = 1, and hence AP =P,

5



We wish to apply these results to the case of a uniaxial strain history ahead
of the transverse wave. Isotropy of 7 implies that o, = o3 if AY = Af, but this
latter condition does not follow from the constituitive assumptions made up to this
point. We now make the following assumptions (which are reasonable for isotropic
materials): for a uniaxial strain history from the undeformed state, C? (equivalently,
UP) is coaxial with F, and A} = Af. Then®

M=AP 0 AE=2P=1/0=1/X. (24)
As noted above, (24), implies 02 = 03. The relations (22), (24), and (8) imply
_ A\E 2/3 _ AP 2/3 A\E 2 1 3
E _ —1- P = —1- —l = P 52 P
-Gk =3 &) TR

On substituting (25)s 4 into (20) and using (4), we obtain the following exact formulas
for the speed Ur of a transverse acceleration wave propagating in the longitudinal
direction into uniaxially strained material:®

2T 27
p UT2 = 1 - 3 I (26)
—1 2(AF) -1
/\E)3
1

where all quantities are evaluated at the wave front. We may solve (26) for 7, and
then (4) and (5) for p and oo. The results are given by (10)—-(12) with p? replaced

3
by p% (A ) . To actually calculate 7, p, and o, from these formulas we need to know

F in addition to Ur, p, and o;. On the other hand, if oy is known (from lateral
stress gauge data or additional constitutive assumptions), then (26) could be used to

calculate A\, assuming Ur, §, and o, are known.
1> s M

5To see this, note that for uniaxial strain, F = V is symmetric positive-definite, and hence
so is F(UP)~1, since F and UF are coaxial. VFR! is the left polar decomposition of F(UP)~?
(cf. (15)3), so the uniqueness of the polar decompostion implies R! is the identity in this case, since
F(UP)~! and VZ are symmetric positive-definite. Thus F = VFUF with all three tensors coaxial
(this may also be inferred from (15); and (14)). Then A; = APAf, which, together with Ay = A3 =1
and A\l = A}, implies (24).

6The Lagrangian wave speed is Uz /A;. For compressive uniaxial strain we expect that M <),
which, by (25)1, is equivalent to A¥ < 1. Then the denominator in (26) is positive, and 7 > 0
(equivalently oy > 07) is necessary for the existence of a transverse wave. Note that (26) reduces to

(9) when there is no plastic deformation, i.e., when Al = AP =1.
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4 Discussion

The results in §2 and §3 are actually valid under more general assumptions than
previously described. Suppose, for example, that

T = T(B;e1,...,en), (27)
where €1, ...,€y are internal state variables that evolve according to
ér = fu(T,B;ey,...,en) if g(T,Bsey,...,en) >0. (28)

Here 7, fi, and gz (k = 1,...,N) are assumed to be isotropic functions of their
tensor arguments for fixed values of £1,...,ey. Thus the response is isotropic elastic
for fixed values of the internal variables, but the elastic response may change with
changes in the internal variables, so that the overall response is inelastic. We assume
that the ¢ are continuous across an acceleration wave. Then (28); implies that the
rates € are also continuous across the wave:

[ex] =0,  [e]=0. (29)

The acceleration wave analysis proceeds just as in the elastic case, and Ericksen’s
formula (7) continues to hold; cf. Bowen and Wang [10]. Hence the formulas (9)-(12)
for transverse waves propagating into uniaxially strained material remain valid. Of
course, the values of the stresses in these formulas will now depend on the current
values of the internal variables, but the relations between 7, p, 09, 01, and Ur remain
unchanged.

The viscoplasticity model may be generalized by replacing (16) with

T =T(BF¢,...,en). (30)

Here the evolution equations for the &, might also involve the plastic stretch U”?
(as well as any internal variables characterizing the plastic state of the material).
Conversely, the evolution equation for U? (and any plastic internal variables) would
generally involve the £,. We will not consider specific forms for these equations.
However, if we assume that the jump conditions (29) and (18) are satisfied across an
acceleration wave, then the jump conditions (19) continue to hold, and the general-
ization (20) of Ericksen’s formula remains valid. Likewise, (26) continues to hold if
we retain the assumption that for uniaxial strain histories, U and F are coaxial and
M=)

We may also include dependence on the temperature § in any of the models dis-
cussed here. Assume the material conducts heat by Fourier’s law, where the thermal
conductivity may depend on 6, p, and the ;. Assuming [0] = 0 across an accelera-
tion wave, it can be shown that [f] = 0 also; cf. [8] and [10]. Then all of our previous
results continue to hold.



We conclude by emphasizing that in the derivation of our results, no small strain
assumptions have been made, even for the elastic strains. For the classes of mate-
rials considered here, this actually simplifies the analysis, resulting in simple, exact
universal relations for the transverse wave speed.
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